强化学习

强化学习
内容简介:

《强化学习》一书内容系统全面,覆盖面广,既有理论阐述、公式推导,又有丰富的典型案例,理论联系实际。书中全面系统地描述了强化学习的起源、背景和分类,各类强化学习算法的原理、实现方式以及各算法间的关系,为读者构建了一个完整的强化学习知识体系;同时包含丰富的经典案例,如各类迷宫寻宝、飞翔小鸟、扑克牌、小车爬山、倒立摆、钟摆、多臂赌博机、五子棋、AlphaGo、AlphaGo Zero、AlphaZero等,通过给出它们对应的详细案例说明和代码描述,让读者深度理解各类强化学习算法的精髓。《强化学习》案例生动形象,描述深入浅出,代码简洁易懂,注释详细。

《强化学习》可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对强化学习感兴趣的研究人员和工程技术人员阅读参考。


邹伟:博士,睿客邦创始人,研究方向为机器学习、数据挖掘、计算几何,致力于机器学习和深度学习在实际中的应用;主持研发50多个人工智能领域工业级项目,并受邀在中国移动、花旗银行、中信集团、中航信、烽火科技、京东方、完美世界等公司进行了上百场讲座和内部培训。创立的睿客邦与国内十多所高校建立了AI联合实验室或实训基地;兼任天津大学创业导师、山东交通学院客座教授等。曾在多个在线平台讲授“机器学习”“深度学习”等课程,广受网友好评,累计学习人数超过百万。

鬲玲:硕士,北京神舟航天软件公司知识工程团队负责人,资深研发工程师。研究方向为知识工程、语义检索、强化学习、自然语言处理。作为牵头单位技术负责人参与并完成国家科技支撑计划项目1项,863计划项目1项。有多年知识管理系统以及自然语言处理项目研发经验,目前正致力于垂直领域知识图谱的落地以及强化学习在自然语言处理领域...

作者简介:
下载地址:
下载强化学习
标签:
文章链接:https://www.dushupai.com/book-content-34549.html(转载时请注明本文出处及文章链接)
读书评论: 更多
  • monarch
    12-27
    内容介绍得很全,看得出作者用心了。尤其代码的注释,很详细。唯一遗憾的就是神经网络部分用的是tf1,我已经学了pytorch和tf2了,实在不想了解tf1了
  • Locke
    08-25
    前部分跟Richard S. Sutton那本相比是重叠的,不如看那本。后面有一些前者未涉猎的内容,总体感觉一般。
  • 薛定谔的猫
    04-30
    连个定理的证明都写不明白
猜你喜欢: