迁移学习
杨强教授领衔撰写,研究团队十余年艰苦研究工作的积累。
迁移学习“开山之作”,解决人工智能的“最后一公里”问题。
张钹院士作序,邓力、高文、李开复、周志华(按姓氏拼音排序)联袂推荐。
迁移学习解决的是系统如何快速地适应新场景、新任务和新环境的问题,在目标域中只有少量标记数据可用时,它赋予了机器学习系统利用辅助数据和模型来解决目标问题的能力。这使得机器学习系统更加可靠和健壮,并且让机器学习模型在面对不可预见的变化时尽可能达到预期的性能。在企业层面,迁移学习允许知识的重复利用,使得每次获得的经验可以重复地应用于现实世界。
《迁移学习》为迁移学习方向首本算法、理论、应用方面成熟、成体系的总结,相关领域研究的系统性参考。为迁移学习领域的新加入者提供了坚实的基础,也为经验丰富的研究人员和开发人员提供了新的视野。
《迁移学习》分为两部分。第1部分(第1~14章)介绍迁移学习的基础,其中第1章对迁移学习进行概述,第2~14章介绍迁移学习相关的各种理论和算法。第2部分(第15~22章)讨论迁移学习的许多应用领域。第23章是对全书的总结。
杨强 微众银行首席人工智能官,香港科技大学计算机科学与工程系讲席教授,第四范式有限公司联合创始人,ACM、AAAI、IEEE、IAPR、CAAI和AAAS会士,香港人工智能与机器人学会理事长,AAAI 2021主席。曾任IJCAI理事长和多个国际顶会主席,包括IJCAI 2015、ACM KDD 2012等。曾获2004/2005 ACM KDDCUP冠军、2017 ACM SIGKDD杰出服务奖、2018 AAAI创新人工智能应用奖、2019 CAAI吴文俊人工智能科学技术杰出贡献奖。曾任华为诺亚方舟实验室创始主任和香港科技大学计算机系主任。曾创立IEEE Transactions on Big Data和ACM Transactions on Intelligent Systems and Technology期刊并任主编。著有《智能规划》《学...
- 上一篇: Les Sciences du Diable
- 下一篇: 科学研究的艺术
-
Voni.08-20一大本文献综述 不值这个钱
-
Sisyphus11-04毫无营养。推荐另一本《python迁移学习》
-
苍天饶过谁12-28翔实。虽然没看完但金盆洗手不会再看了也算读过。
-
2024-06-226
-
2024-06-224
-
2024-06-225
-
2024-06-228
-
2024-06-227
-
2024-06-227
-
2024-06-229
-
2024-06-229